Integration of Image Decomposition Methods and CNN for Image Classification
Straipsniai
Mahammad Ismayilov
Kaunas University of Technology
Dalia Čalnerytė
Kaunas University of Technology
Publikuota 2025-05-09
https://doi.org/10.15388/LMITT.2025.6
PDF

Kaip cituoti

Ismayilov, M. and Čalnerytė, D. (2025) “Integration of Image Decomposition Methods and CNN for Image Classification”, Vilnius University Open Series, pp. 45–54. doi:10.15388/LMITT.2025.6.

Santrauka

This study explores integrating Haar wavelet decomposition techniques with convolutional neural networks for image classification on the MNIST dataset. The research demonstrates that without losing significant accuracy by applying the 1-level, 2-level, and 3-level decomposition techniques, the model can reduce the dimensionality and the number of parameters required by the convolutional neural network model. During the training, the 1-level Haar CNN results achieved optimal performance, demonstrating competitive accuracy and computational efficiency compared to the baseline CNN model. This approach highlights the potential of wavelet decomposition techniques to enhance CNN performance with limited computational resources.

PDF
Kūrybinių bendrijų licencija

Šis kūrinys yra platinamas pagal Kūrybinių bendrijų Priskyrimas 4.0 tarptautinę licenciją.

Atsisiuntimai

Nėra atsisiuntimų.